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Application of Neural Networks in Flight and System Control Technology 

By Todd T. W. Bruner, Digital System Resources, Inc. (DSR) 
(703) 418-9176, tbruner@dsrnet.com, www.dsrnet.com 

1    BACKGROUND 

This paper discusses research Digital System Resources, Inc, 

(DSR) performed in an application of neural network 

technologies for flight control. DSR under Small Business 

Innovative Research (SBIR) contracts with the Air Force 

Research Laboratory (AFRL) at Wright Patterson Ajr Force 

Base has successfully designed pilot behavior neural networks 

and algorithms for autonomous vehicles. We have succeeded in     r.        , ,>.,. . .       ..  T        ,   , b Figure 1 Miniature Air Launched 
Vehicle 

development of autonomous control techniques, algorithms and 

tactical decision methods. These networks, algorithms and methods have been demonstrated in both a 

simulation environment platform and a Miniature Air Launched Vehicle (MALV) platform (Figure 1). 

Testing was verified and validated in the simulation program and hardware-in-the-loop (HITL) testing 

giving the software a technology readiness level (TRL) 4/5. DSR has at least five years of experience 

working with AFRL in developing the concept, developing the algorithms, and finally applying the 

algorithms to a flight vehicle. Initially DSR was awarded a contract to develop the concept of 

autonomous flight control by use of neural networks. AFRL second contract with DSR was to develop 

UAV Flight Control Technologies algorithms and neural networks to: 

> Design and demonstrate sophisticated neural networks to perform select functions of a simulated 
autonomous vehicle. 

> Prove, via simulation, the ability of multiple neural networks to continuously perform their 
functions in parallel, with the collective result being the safe execution of a mission by a 
constellation of four autonomous vehicles operating in formation. 

> Prove the ability of neural networks to perform conflict resolution between neural networks. 
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After DSR proved successful in a simulation environment, the company was contracted to apply 

these algorithms to DARPA's MALV program. DSR was fortunate to work with Northrop Grumman 

Ryan Aeronautical Center. Their expertise and willingness to apply theses advance concepts was the 

enabling activity and success in our testing and progress through HITL testing. 

This paper addresses: 

> The neural network development process 

> Demonstration of selected neural network flight control technologies 

> The lessons learned from the interfacing of the neural networks to flight vehicle 

> Future applications in unmanned systems and support systems 

2    THE NEURAL NETWORK DEVELOPMENT PROCESS 

DSR utilized neural networks for several reasons. First, neural networks can be used for flight 

control functions, which are difficult to perform with traditional approaches. Neural networks are 

effective at solving problems where the relationships between the input variables and output variables 

are not well understood; traditional algorithms, and if-then expert system rules are irrelevant to these 

problems. Second, neural networks are mature and well-understood technology, especially the feed- 

forward neural networks used in this architecture. Third, the feed-forward neural networks cannot alter 

their training after being placed in a platform, so their behavior is predictable and reliable. For example, 

if a friendly F-16 mistakenly shoots at a UAV, the UAV will not learn that F-16s are the enemy. 

Function Determination: Determining which functions that need to be performed is the first 

step in our process. Our neural networks are involved in a number of functions: getting the platform to 

the area of operations; determining the validity of a preprogrammed or detected target; determining the 

need to launch a weapon against that target; making the decision to fire the weapon from the "best" unit 

in the constellation and assigning that unit to fire; and ensuring that the platform is in the correct 

location to launch that weapon.   DSR's neural networks tell the platform WHAT TO DO, not HOW TO 
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DO IT. The latter is a function of the platform flight control or mission computer. This is an important 

distinction. This defines the limitation of our system. The neural networks do not replace existing 

software algorithms used for flight control functions or navigation in current generation unmanned air 

vehicles (UAVs). What they do is significantly expand the range of scenarios that the flight 

control/mission computer is able to correctly and reliably respond to. They add a level of intelligence to 

the platform, enabling it to recognize and react appropriately to any situation, with the goal of 

dramatically reducing the level of operator intervention. 

Output 
Layer argprii) 

Align Flight 
Vector 

Move Towards 
Assigned Position 

Maintain a Minimum 
Distance 

Input 
Links 

Output 
Links 

Figure 2 Sample Neural Network Diagram 

Input   Activation   Output 
Function     Function 

Figure 3 Sigmoid Function 

Neural Network Node: We use the perceptron model (Rosenblatt, 1958)1.   The network 

consists of layers of nodes and the weighted connections between the nodes. Outputs are produced at 

the output layer by following several steps. . The chosen output is the behavior that the UAV should 

perform at the current time. Each node value is created by a two-step algorithm, in this case. Some of 

our networks are single step.   There are many possibilities for activation functions, such as a step or 

sigmoid function (figure 3). The result is a hybrid fuzzy neural net.2 DSR selected the feed-forward 

neural network type to implement the UAV flight control subsystem. The feed-forward neural network 

1 Behavior-Based Robotics, Ronald C. Arkin, MIT Press, 1998. 

2 Intelligent Control: Principles, Techniques and Applications, Zi-Xing Cai, World Scientific 1997 
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learns during laboratory training but does not learn after it is placed in a simulated or real platform. The 

deterministic nature of feed-forward neural networks is key for our applications with a UAV. 

The next step is the design of neural network architecture. The number of input and output 

nodes is fixed according to the system; however, selecting the optimal number of hidden nodes is a 

difficult design issue, that is far from obvious, and often considered to be problem dependent. Intuition 

suggests that 'more is better' but this is not always our case. The number of hidden units and layers 

control the power of our model to perform the mission, but there is an associated trade-off between 

training time and model performance. Large hidden layers could also become counterproductive, as an 

excessive number of free parameters will encourage over fitting of training data, reducing the 

generalization capabilities of our network. We used no general procedure to determine the optimum 

number of nodes or layers. Trial and error, using different architectures and fixed stopping conditions, 

was our best approach. The number of layers in our neural networks and their connection structure 

greatly affects their performance. Usually a fully connected multiplayer network produces more 

accurate outputs but with a higher computational burden. In our case, since the network is to be 

integrated into another system, which is linked to computer operations, we selected a fully connected 

three or four layer neural network, consisting of input layer, one or two hidden layers and a output layer 

to balance accuracy and computational requirements. 

Behavior Matrix. Our third step in the process was to develop the behaviors. DSR used a 

behavior-based methodology5 to create intelligent agents using neural networks. This methodology 

asserts that a complex behavior can be produced through the interaction of a few simple behaviors. The 

neural network chooses the simple behavior that the platform executes in real-time. Over the course of 

time, the neural network produces a stream of simple behaviors. This stream of simple behaviors results 

in complex behavior. For example, the formation behavior consists of three simple behaviors, which are 

' Behavior-Based Robotics, Ronald C. Arkin, MIT Press, 1998. 
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"Align Flight Vector", "Move Towards Assigned Position", and "Maintain A Minimum Distance". 

Suppose a UAV has finished pursuing a target and now wishes to rejoin its formation. The formation 

neural network repeatedly outputs "Move Towards Assigned Position" until the UAV is close to its 

assigned position, and then it repeatedly outputs "Align Flight Vector" to align the UAV with the rest of 

the formation. If at any time the UAV might collide with an aircraft or terrain feature, then the 

formation neural network outputs "Maintain A Minimum Distance". These three simple behaviors, 

performed at the right time, produce the formation behavior. The construction of any behavior matrix 

defines the inputs, outputs and the intersecting logic. The domain expert creates the logic for each 

intersecting cell. A description of this for the formation neural network follows. 

Formation Neural Network Inputs: The formation neural network contains eight inputs. The 

following chart lists the inputs and also describes each of the inputs in detail. 

INPUT Description 

delta X Distance in feet from the UAV to the Virtual Lead along the direction the lead is flying 

delta Y Distance in feet from the UÄV to the Virtual Lead along the direction of lead's wingtips 

delta Z Altitude difference in feet between the UAV and the Virtual Lead 

delta speed Difference in knots between the speed of the UAV and the speed of the Virtual Lead 

delta heading Difference in degrees between the heading of the UAV and the heading of the Virtual Lead 

delta pitch Difference in degrees between the pitch of the UAV and the pitch of the Virtual Lead 

delta A+B+C Distance in feet from the UAV to the closest UAV in the formation 

doltn <"4TA Confirm angle in degrees to the closest UAV 

Formation Neural Network Outputs: The formation neural network contains three outputs: (1) 

Move to Assigned Position; (2) Align Flight Vector; and (3) Maintain Minimal Distance. The output 

"decision" that achieves the highest score during each neural network process is the chosen output that 

will be executed. The output "decision" is sent to the flight/mission computer where the actions are then 

executed. 

Output Description 

Align Flight Vector Align flight vector to that of the Virtual Lead 

Move Towards Assigned Move to assigned formation position 
Position 
Maintain a Minimal Distance Perform a series of maneuvers to avoid a collision 
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Formation Behavior Matrix: Figure 4 is the formation behavior matrix designed by a domain 

expert. The chart shows the interactions between the inputs and outputs of the formation neural 

network. The behavior matrix is converted to software code. DSR developed a neural toolkit which 

constructs the networks based on the network architecture chosen, reads the behavior matrix, develops 

training set data and trains the neural network. With an independent set of training data, the networks are 

tested. Once this is completed, then the networks are integrated into the system. 

Align Flight Vector Move Toward Assigned Position Maintain a Minimum Distance 
Delta X >200 ft =00 

500 ft = 20 
>2000 ft = 50 

Delta Y >200 ft =00 
1000 ft = 20 

>2000ft= 100 
Delta Z >200 ft =00 

1000 ft = 20 
>2000 ft = 50 

Delta Speed >5 knots =00 
10 knots = 20 

>20 knots = 40 

>5 knots =10 
10 knots = 20 

>20 knots = 40 
Delta Heading >2 degrees = 00 

10 degrees = 20 
>20 degrees = 40 

Delta Pitch >5 degrees = 00 
10 degrees = 20 

>20 degrees = 40 
Delta A+B+C ^<f)0 o -TOO 

i 000 ft- 100 
>6000 ft = 00 

Delta CAT A >2 degrees = 25 >0 degrees = 100 
10 degrees = 50 

>30 degrees = 00 

Figure 4 Fonnation Behavior Matrixes 

This process was followed for the creation of the neural networks for both UAV and MALV. Five 

neural networks Formation, Navigation, Coordinated Engagement Weapon Control (CEWC), and 

Conflict Resolution were developed. Air To Ground, Fonnation and Navigation were integrated into the 

MALV vehicle. Listed below are the individual neural networks and the functions performed. Figure 5 

illustrates the C2 Subsystem that illustrates the relationship between the modules and the subsystem. 
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FORMATION NAVIGATION 

Perform join-up of UAVs into a desired formation 

Maintain formation orientation through course and 
speed changes 

Change formation shapes 

Perform Collision avoidance 

Waypoint Guidance 

Time Management 

Threat Avoidance 

Pop-up threats 

CEWC AIR TO GROUND 

Resolve which UAV will shoot the target Determine whether the UAVs release weapons 

CONFLICT RESOLUTION 

Resolves conflicts between competing behaviors 

Navigation 
Subsystem 

Command and Control Subsystem 

Conflict Resolution Module 

Mission 
Execution 

Module 

CEWC 
Module 

Formation 
Module 

Navigation 
Module 

Sensor 
Subsystem 

Bus (1550) 

Health 
And Status 

Flight Control 
Subsystem 

Comm 
Subsystem 

Weapons 
Subsystem 

Figure 5 Command and Control Subsystem 

In addition to the neural networks, algorithms were also developed by DSR to perform target 

engagement, cooperative target search, threat detection, and formation optimization. 

Scenario Toolkit and Generation Environment (STAGE), a commercially available software 

application used to build scenarios in real-time synthetic environments, was used as a simulation 
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environment to test their neural network and algorithm technology. So that the software developed 

could be portable to other systems, DSR also used its own Multipurpose Transportable Middleware 

(MTM). This proved invaluable in transitioning from UAV to MALV from a software production 

perspective, not design. MTM is an insulation layer of software that protects application programs from 

the nuances of different target hardware and operating systems. MTM protects the investment in 

application software when target hardware and operating systems change. The resultant UAV system 

architecture for the flight control technologies is depicted in Figure 6. This architecture provides a basis 

for further advancements. 

Simulation Interface Code 

*mfii 

on int 

A        STIGF       Navi9a,ion 

' r \t—    ':.    : . Gulputb 

Middleware 

CHOSEN 
BEHAVIORS 

Figure 6 System Design - UAV 

For MALV, DSR applied UAV lessons learned and redesigned the software to incorporate a more 

modular architecture. The new architecture provided DSR the ability to test the same code on STAGE, 

Ryan Aeronautical's All Software Simulation, and the HITL. This portability to any vehicle gave 

genesis to the name Intelligent Vehicle Autonomous Network (IVAN) Software (Figure 7). 
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Figure 7 System Design - MALV 

3    DEMONSTRATION 

DSR has successfully demonstrated formation flying, join-up, cruise, target engagement, threat 

detection, threat avoidance, and collision avoidance in a simulated or HITL environments. DSR was 

able to achieve these successes by including qualified Air Force and Navy pilots from the beginning in 

the requirements, design and development process. Their extensive research in the objectives necessary 

to achieve mission effectiveness in an unmanned system were used as the basis for the algorithms and 

neural networks. These pilots are what are called in the neural net development process the "domain 

experts". They articulate the behavior of a pilot into a behavior matrix. The domain experts (pilots) 

then validated the behavior of the UAV operating by the algorithms. 

4      LESSONS LEARNED 

There were several lessons learned throughout the development of the UAV and MALI programs. 

At the beginning of development DSR chose a structured coding approach that relied heavily on the 

simulation environment STAGE. Once awarded the MALI contract DSR soon realized an object 
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oriented approach was better suited for the program. New functions were also written allowing the code 

to be independent of the simulation environment. The code was now easily transportable between 

STAGE and Northrop Grumman's All Software Simulation. 

DSR also developed it's expertise in Neural Networks over time and realized that the training of the 

networks could be accomplished in a matter of minutes compared to the long hours of training that 

achieved the same results. 

Domain experts developed their skills during the growth of the program. In the beginning the 

process from the behavior matrix to a complete running neural network could take several months and 

many iterations. With the understanding of the weights and the interaction between the inputs and the 

outputs of the neural networks the process time was shortened and less iterations of the behavior matrix 

were needed. 

5    FUTURE APPLICATIONS 

The ability of neural networks to be trained to replicate decisions of an expert will provide 

innovation to the way numerous industries and agencies function today, both within the Federal 

Government and the civilian business community. Any system that performs repetitive actions, 

Tv-spor^s to external stimuli, and is subject to minor variations ^ a candidate fc *he application of neural 

networks. Neural networks will enable economy of operation by responding to external stimuli and 

minor variations to the system it is monitoring. The neural network will adjust the system to maintain 

an optimal operating or design condition. The ability of neural networks to be trained to react repeatedly 

and reliably to specific circumstance produces very meaningful cost savings in both economy of 

operation and system life cycle cost. In terms of economy of operation, neural networks will enable 

functions to be executed using significantly less lines of code. The "If...Then" statements we are so 

accustomed to, will be replaced. The operations are based on a number of variables, and as the neural 

network is trained from the stimuli and variances received as inputs, the need for specific lines of code 
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are reduced, adjusting the system to a more efficient state or design. The efficiency of the neural 

network can be used to free up capacity on computer systems for use by other applications. Neural 

networks have been designed for decision making - to take knowledge, apply it to the current situation, 

and refine its decision baseline as more knowledge becomes available, either from own ship sensors or 

from external sources. 

Combined Technologies: DSR's latest research involving real-time flight control concept for a 

semi-autonomous/autonomous vehicle involved teaming with the United States Naval Academy 

(USNA) to combine our behavioral based deterministic neural network technologies with USNA's 

advanced techniques for controlling the null space permitting a decentralized control methodology, and 

the use of nonlinear optimization feedback control methods to control complex nonlinear system. 

Typically, autonomous control of vehicles 
Key 

Task 
Planning 

Trajectory 
Generation 

implement either a behavior based 

approach or systems based approach.   A 

systems approach provides a deterministic 

result, and generally requires significant 

algorithms and inter communications. In 

the case of lethal weapons, control systems 

typically demand such an approach. While ^.        „ „ ,    , . 
Figure 8 System Architecture 

a system approach provides provable results, typically this approach requires approximations to complex 

dynamics and relatively significant processing time. Behavior based systems demonstrate exceptional 

real-time performance and dynamic adaptability and robustness. But these, too, have their drawbacks, in 

that, generally, these systems do not use an explicit mathematical model approach or present a closed 

design. Our new concept combines these two approaches with recently developed algorithms. Consider 

the system architecture in Figure 8. 
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The Task Planning module can account for unknown terrain obstructions and moving threats 

such as radar, jammers, and other aircraft, by use of our neural networks to provide operational and/or 

strategic information to the trajectory generation scheme for real-time instantiation. The trajectory 

generation, control, plant and feedback modules perform in real time, optimally in the nonlinear region 

of a flight envelope. Trajectory generation expands the effort and offers flexibility for neural network 

integration with well-established system-theoretic robot control methods through application of 

redundant manipulator techniques. The plant may include dynamics of multiple vehicles, and the control 

may be centralized or decentralized. Feedback and control modules provide a model independent 

controller having the potential to control a variety of vehicle platforms within formation or platoons that 

are being tasked. The software architecture of Figure 8 incorporates three advanced techniques. These 

techniques include neural networks, redundant manipulator techniques for decentralized control, and 

feedback controller using dynamic quasi-Newton method based on non-linear least-squares optimization 

methods. 

Control Of UAV Cooperative Behavior: Our current research has identified design issues 

associated with control of UAV cooperative behavior, to include control structure architectures and 

minimum data rates are depicted in Figure 9. Initially the constellation of four UAVs is sent out with a 

mission, which is achieved by use of their group behavior. As the constellation moves to a way point the 

formation changes. Was the formation changed due to reactive or deliberative control systems? Did this 

require a communication transmission? The constellation continues and one of the four UAVs is shot 

down. The constellation has the same reconnaissance mission of four targets. Is another UAV called up 

from reserve? Is the unassigned target left alone? Do the remaining three UAVs retask themselves? Is 

the man-in-the-loop required to transmit a new mission? Ideally, the remaining three UAVs would think 

alike and determine that UAV number 2 covers targets 2 AND 3 without any communication. 
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Figure 9 Concept of Algorithm Application to UAV Command and Control 

To achieve this, three issues are considered: flight control, group behavior, and tactical mission. Results 

of understanding the limitations of control structures and data requirements will enable designers of 

autonomous systems. Well-designed plans have reserve capacity to achieve other missions, and 

situations can change significantly requiring deviations from the plan. The keys to all of these resource 

management issues are the timeliness and cooperative nature of the assets available. "Cooperative" 

includes taking advantage of matching the correct sensor platform with the target condition and 

optimization of platform routing, while timely includes doing so with sufficient swiftness to allow more 

effective targeting. A timely and cooperative assignment would have minimum impact, and achieve a 

high probability of mission success. 

Other Applications: We move now from Autonomous Vehicle Control for a brief discussion of 

research that DSR is investigating in System Control using neural networks. A practical application 

being investigated for our neural networks is dynamic resource allocations. This is especially important 

involving Intelligence, Surveillance and Reconnaissance (ISR) to support engagement of enemy targets. 

One of the most stressing problems facing battle managers is the need to be able to quickly, efficiently 
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and dynamically re-task and reallocate ISR assets in response to new information or changing battlefield 

conditions. This could be particularly true for mobile targets such as TEL missile launchers using 

"shoot and scoot" tactics that may only expose themselves for short periods of time before moving back 

into hide sites, or as an example for the Navy, a submarine periscopes that have broken the water surface 

prior to a missile launch. They both provide an obvious, but fleeting signature and location, and unless 

the battle manager can rapidly reposition ISR assets to the launch area, the target will be lost. Battle 

managers require the ability to quickly assess the unified ISR plan to determine if there is the 

appropriate capability (sensor/asset) available, if it can be retasked or diverted to the new mission in 

time, with the ability to determine impact on the unified plan. Management of the theater's ISR assets 

involves the positioning of platforms to obtain coverage, matching of sensor type (e.g. radar, or EO) to 

target signature or ISR task (e.g. tracking or ID), and determining the impact of the retasking on the 

overall theater ISR plan. Depending on the threat priority assigned to the fleeting target and the impact 

to the overall plan, a small subset of the sensor assets might be Apportioned, perform a Quick Look task, 

and Return to primary mission assignment (AQLR). Figure 10 describes the problem today, and with 

more efficient managing of assets utilizing DSR software techniques. 

The elements controlled might consist of: 

ISR Assets Sensors Mission, Task Or Function Assignments 

■ Joint Stars, 

■ U2, 

■ Rivet Joint, 

• UAVs, (Global Hawk, 
Predator)                                               , 

■ Discoverer II                                         , 

'     Satellite (Space) 

■ GMTI Radar, 

■ SAR, 

■ EO/IR, 

'     SIGINT 

COMINT 

FOPEN Radar 
HRR 

UGS 

■ Detecting 

■ Classifying 

■ Tracking ground targets 

■ Battle Damage Assessment 
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\ 
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Figure 10 Effect of Asset Management with DSR Software Techniques 

As  postulated  above,  optimizing the  employment  (which  combinations,  their  coordination  and 

deconfliction) of these elements is the critical uncontrollable factor. It is unreasonable to expect a human 

operator to be familiar with this many sensors and platforms, and to track their positioning and sensor 

operating mode, as well as being able to detect small nuances in target behavior that indicates that that 

track is a target of interest. When one adds tothis problem the possibility of hundreds of thousands of 

targets, over thousands of square miles in which the only discrete target behavior is its disappearance as 

it moves into a "deep hide condition" there could be an expectation that this problem can only be solved 

in a special facility.    By combining our artificial intelligence neural network technologies with 

techniques that employ the use of interactive multi-model (IMM) Kaiman filters embedded in a 

Bayesian   network   as   a   tightly   coupled   contact   tracker   and   recognition   algorithm   with   an 

operator/mission  planner   situational   awareness   capability   to   discriminate   information   and   be 

opportunistic in the collection of data, especially for targets which may emerge for brief periods of time. 
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